منابع مشابه
Regularization of Dynamic Data Reconciliation Problems by Projection 1
Dynamic data reconciliation problems are discussed from the perspective of the mathematical theory of ill{posed inverse problems. Regularization is of crucial importance to obtain satisfactory estimation quality of the reconciled variables. Usually, some penalty is added to the least{squares objective to achieve well{posedness of the problem. However, appropriate discretization schemes of the t...
متن کاملDiffusion propagator imaging by model-driven regularization
Diffusion-weighted magnetic resonance imaging is able to non-invasively visualize the fibrous structure of the human brain white matter. The robust and accurate estimation of the ensemble average diffusion propagator (EAP), based on diffusionsensitized magnetic resonance images, is an important preprocessing step for tractography algorithms or any other derived statistical analysis. In this wor...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
A Data-Driven Regularization Model for Stereo and Flow Citation
Data-driven techniques can reliably build semantic correspondence among images [16, 15]. In this paper, we present a new regularization model for stereo or flow through transferring the shape information of the disparity or flow from semantically matched patches in the training database. Compared to previous regularization models based on image appearance alone, we can better resolve local ambi...
متن کاملData-Driven Impulse Response Regularization via Deep Learning
We consider the problem of impulse response estimation for stable linear single-input single-output systems. It is a wellstudied problem where flexible non-parametric models recently offered a leap in performance compared to the classical finitedimensional model structures. Inspired by this development and the success of deep learning we propose a new flexible datadriven model. Our experiments ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2020
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/abb61b